Background

Vitamin A deficiency (VAD) is caused by inadequate dietary intake of vitamin A-rich foods. It is a serious public health problem in Africa and affects an estimated 43% of children under 5.

Two common approaches used across the continent to combat VAD are supplementation and fortification. Another strategy for reducing micronutrient malnutrition is through conventional agricultural biofortification.

Since the early 1990s, there has been considerable investment in research and development on orange-fleshed sweetpotato (OFSP) as part of a food-based approach that provides large sections of both urban and rural populations with access to vitamin A to address VAD.

Evidence shows that the consumption of OFSP can improve serum retinol levels and that OFSP is a cost-effective way to combat VAD among children under 5 (Jalal et al. 1998; Low et al. 2007; Burri 2011; HarvestPlus 2012).

The challenge still remains on how to take OFSP to scale in Africa given limited resources and capacity. This poster focuses on the experiences of the Reaching Agents of Change project in capacity strengthening, facilitating learning and lessons learnt.

Methods

The Reaching Agents of Change (RAC) project was designed as a scaling-up initiative implemented by the International Potato Center (CIP) and Helen Keller International (HKI) in partnership with national partners in three primary countries (Tanzania, Mozambique, Nigeria) and two secondary countries (Ghana and Burkina Faso).

RAC was a unique initiative that advocated for increased investment in OFSP to combat VAD among young children and women of reproductive age. RAC focused on policies, resource mobilization and strengthening advocacy and technical capacity for successful nutrition interventions using OFSP and seed multiplication and distribution (taking a value chain approach) (Figure 1).

In order to build a significant pool of trained change agents for widespread impact, RAC adopted a stepwise, cascading planning and delivery approach (Figure 2).

Results

$21.6 million investment generated for OFSP projects against a target of $18 million.

Two (2) training-of-trainers (TOT) training toolkits developed and published in various languages (English, Portuguese, Swahili, and French).

Capacity of three national host institutions (Sokoine University of Agriculture (SUA), the University of Eduardo Mondlane (UEM), and the Agricultural and Rural Management Training Institute (ARMTI)) developed to deliver a 10-day TOT course.

Nine (9) TOT courses delivered and 224 secondary facilitators trained using adult learning techniques.

4,160 tertiary facilitators and farmers trained through a total of 45 step-down courses.

51 agencies trained to design and implement technically strong, gender sensitive and cost-effective projects and programs on OFSP.

Capacity of 55 national advocates and 11 regional champions strengthened.

OFSP and/or biofortification entrenched in 19 key policy/strategy documents in three primary countries.

18.1 ha of primary and 28 ha of secondary clean planting materials (OFSP vines) established and distributed to 132,877 households.

Conclusion

The RAC experience demonstrated a potential scaling-up model for biofortified crops based on the hypothesis that scaling up can be achieved through supportive policies (and investment), strong institutional capacities and appropriate innovative technologies working through a partnership of international, regional, government, private and civil society organizations.

Lessons Learnt

A multi-disciplinary, multi-agency partnership is critical for scaling up OFSP due to widespread malnutrition in the target countries, and the crosscutting nature of nutrition (traverses agriculture, health, and nutrition).

Availability and accessibility of ready-to-go technologies/products is important to support advocacy and resource mobilization efforts. For example, scaling up was more successful in Mozambique where more than 15 OFSP varieties had been released prior to project implementation.

Modular; less intensive and hands-on TOT courses would be more effective and more inclusive (especially for women who found it challenging to be away from families for too long).

Future project designs should make provision for seed money to facilitate step-down courses.

Sustainable Capacity for Scaling-Up

<table>
<thead>
<tr>
<th>SUSTAINABLE CAPACITY FOR SCALING-UP</th>
<th>TECHNOLOGY (OFSP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity of technical host institutions</td>
<td>Capacity of Change Agents to Design & implement Programs</td>
</tr>
<tr>
<td>Capacity of Change Agents to Design & implement Programs</td>
<td>Capacity of Advocates for Policy Change & Resource Mobilization</td>
</tr>
</tbody>
</table>

Figure 2 - Stepwise, cascading planning and delivery approach

Figure 1: The three interrelated levels of capacity building for up-scaling

Figure 1: The three interrelated levels of capacity building for up-scaling